

· "I may not have gone where I intended to go, but I think I have ended up where I needed to be."

(Douglas Adams)

Scheduling Run-6

"You live and learn. At any rate, you live" &

"Flying is learning how to throw yourself at the ground and miss." (DA)

Scheduling Dynamics: Kin Yip

```
Machine vs Expt.:
Total physics processes of interest in an expt.
     Nexp = \int (\varepsilon \cdot \sigma \cdot L) dt
Machine \Rightarrow maximize \int L dt (L(t))
Expts. \Rightarrow maximize Nexp (\varepsilon(t) \cdot L(t))
  dead channels, degraded detector
   performance etc. all reduce \epsilon
```

Note: for pp Nexp = $\int (\epsilon \cdot \sigma \cdot L \cdot P) dt$ where $P = P^2$ or P^4

Scheduling Dynamics: Kevin

What is actually paid for is:

$$N_T = N_{exp} + N_{missing} + N_{setup}$$

$$N_{\text{setup}} = N_{\text{Initial}} + N_{\text{Rotators}} + N_{\text{Energy}} + N_{\text{Species}}$$

Benefit to $\varepsilon(t)$: $N_{Maint} + N_{ExpAccess}$

Benefit to L(t): N_{Devel} + N_{APEX} + N_{Maint}

Exp. Overhead: N_{Rotators} + N_{Energy} + N_{Species} + N_{Initial}

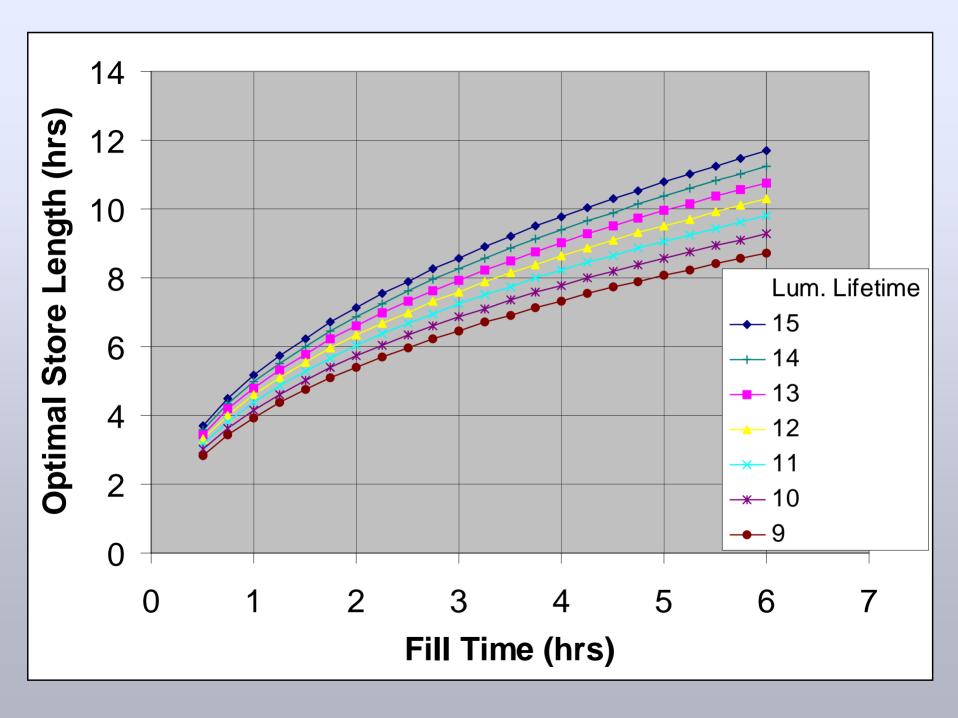
Without any doubt is BAD: N_{Fail} Would be nice if it was 0: N_{Fill}

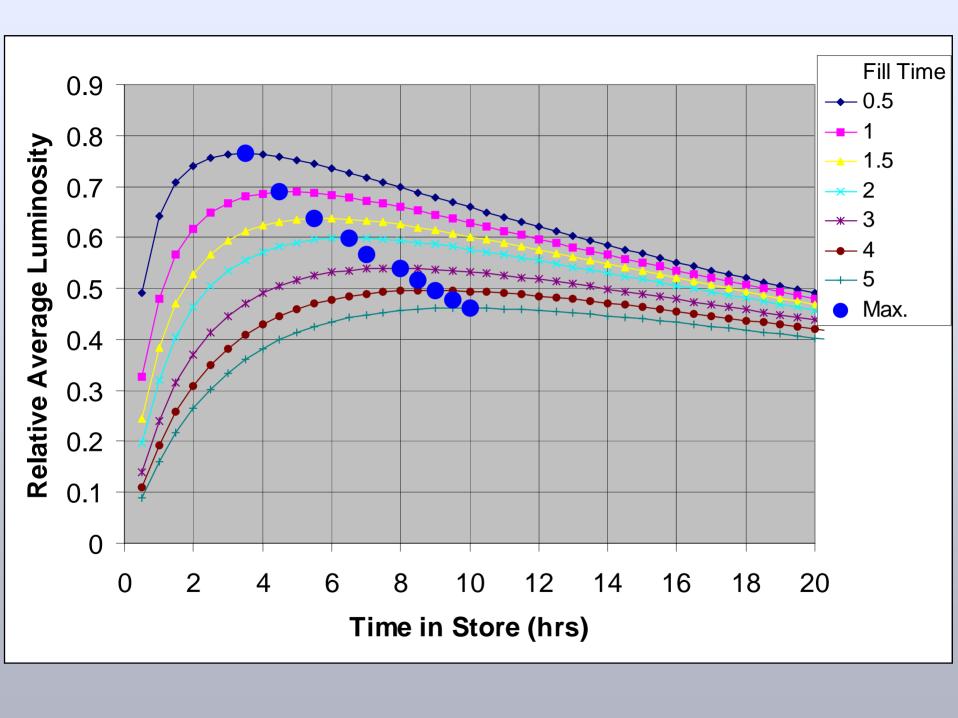
Scheduling Dynamics: Kevin Where do we lose most*?

	Hours	% w/o setup
Science	1066	39.7 %
Machine Setup	496	18.5 %
Machine Devel.	215	8.0 %
APEX	129	4.8 %
Exper. Setup	79	2.9 %
Unscheduled Downtime	441	16.4 %
Unscheduled Shutdown	100	3.7 %
Maintenance	160	6.0 %

^{*}Note: Sums of weekly numbers from 2/28 to 6/20.

Luminosity: standard approach


Luminosity decay, where τ is lifetime:


$$\mathbf{L} = \mathbf{L}_0 \, \mathbf{e}^{-\mathbf{t}/\tau}$$

Average Luminosity, with fill times t_f and beams in collisions times t_c is:

$$\langle \mathbf{L} \rangle = \frac{\mathbf{L}_0 \tau (1 - e^{-t_c/\tau})}{(t_c + t_f)}$$

Solve for optimal integrated Luminosity.

Functional Forms (FNAL)

- Time-independent lifetime
 - \triangleright Two parameters: τ and \mathscr{Q}_0
 - One fit restricted to 1st 2 hours, one is not
- Time-dependent lifetime $\tau(t)$ choices
 - \triangleright One parameter $\tau(t)$ fit, 2 parameters in all
 - $\tau = \tau(t) = C t$
 - \triangleright Two parameter $\tau(t)$ fit (3)
 - $\tau(t) = \tau_0$, t < 2 hours
 - $\tau(t) = \tau_{\infty}$, $t \ge 2$ hours
 - \triangleright Two parameter $\tau(t)$ fit (3)
 - · (from McGinnis)
 - τ(∞) fixed
 - \rightarrow Three parameter $\tau(t)$ fit (4)
 - · Used in the Operations Model
 - $\tau(t) = \tau_0 + C_1 t^{C_2}$

From Elliott McCrory presentation: Fitting the Luminosity Decay (2004)

 $\tau(t) = \tau_{\infty} \left[1 - \left(1 - \frac{\tau_o}{\tau_{\infty}} \right) e^{-\frac{t}{\tau_{\infty}}} \right]$

http://beamdocs.fnal.gov/AD-public/DocDB/ShowDocument?docid=1091

Comments on Scheduling

- Meetings
- APEX Works
- Maintenance (3 weeks doesn't work)
- Experimental Accesses
- Run Coordinators

Meetings

- Too many meetings.
- 8:30 meeting is key during setup. Why keep it for the entire run?
- Polarized 4 pm meeting: Too Long!
- Others (+ 9 10 meetings/wk)
 - ✓ Injectors = can't be missed; key
 - ✓ Exp. Support = key, good example
 - √ RHIC = rarely useful: too many presentations
 - ✓ Mon. Scheduling meeting: extremely important for Weekly issues
 - ✓ Tue. Scheduling meeting: extremely important for long term issues.

APEX

- APEX works.
 - ✓ Here is one thing that sticks to schedule.
 - ✓ Showed great flexibility.
 - ✓ Recovery is not a problem.
- Comments on APEX (Kevin's perception)
 - ✓ There should be open proposal presentations with local peer review (positive feedback).
 - ✓ On the other hand, learning comes from experience (and experiments).
 - ✓ Give Yun a prize. He is a good example!
 - ✓ APEX sessions are too long!

APEX

- My Proposal: Shorter, more frequent APEX
 - ✓ 2 hours every day of the week (long lunch time studies) + 4 hours every Wednesday <u>OR</u>
 - ✓ 3 sessions/week, variable length depending on experiment requirements. Monday, Wednesday, & Thursday.
- APEX policy needs clarifying.
 - ✓ What is policy during a setup week?

 (e.g., during 22 GeV and 62.4 GeV week)
 - ✓ Current policy says 12 hrs/wk AT MOST. When did we every do less? (except to cancel)
 - ✓ When does APEX become experiment contingency?

Maintenance

- Maintenance is not a problem, recovery from maintenance is a problem.
 - ✓ Making fewer maintenances avoids the real problem.
- Proposals
 - ✓ One maintenance every week (a short one) + one long maintenance/month.
 - ✓ Or go back to every two weeks.

Experimental Accesses

- Emergency access cannot be avoided.
- More frequent maintenance will help.
- Most of the time they can be scheduled behind something else, so the real impact doesn't look that bad.
- 10 Non-emergency accesses are disruptive.

Run Coordinators

- 1. We need the LP's back.
 - 1. Experiment run coordinators are doing too much. Not very effective, in my opinion.
 - 2. They need to focus on the experiment and allow the detail interface with CAD to go to a CAD representative.
- 2. Need a schedule or list of experimental improvements.
- 3. Experiments need a test beam. Too many improvements are going in during physics running. IF we had a test beam, we all know they would use it!

What is a Liaison Physicist?

- Responsible for all interfaces between experiment and C-AD.
- Assists in beam definition for experiment (e.g., what Angelika does now).
- Handles Radiation safety issues (shielding, radiation monitors, RSC reviews, ...).
- Handles experimental safety issues.
- Becomes the experiment advocate within the department.
- Assists in run planning and execution.
- * + much more...

Final Remarks

- More effort needs to go into improving (reducing) time between stores.
- Experimenters are not pushing hard enough to get optimal store conditions (time between stores & optimal store lengths).
- I have learned a lot about RHIC (& some things perhaps I didn't want to know).
- Looking forward to next time ;-)